

Institute for IIT-JAM I CSIR-NET/JRF I U-SET I GATE I JEST I TIFR I BARC

Dedicated to excellence...

SUBJECT – THERODYNAMICS & STATISTICAL

CLASS ROOM TEST-01

"CSIR-NET/JRF JUNE-2021"

- **GATE / JEST**
- TIFR / BARC
- All Ph.D. Entrance Exams

"We Believe In Quality Education"

THERODYNAMICS & STATISTICAL

CLASS ROOM TEST-01

1.	An ideal gas expands by using an equation of process PV^{γ} = constant. For which value of γ gas will show heating effect?								
	(a) $-1 < \gamma < 0$ (b) $1 < \gamma < 2$								
	(c) $0 < \gamma < 1$ (d) $2 < \gamma < 3$								
2.	The average energy per particle for a Fermi gas at $T = 0$, in terms of Fermi energy $\varepsilon_{F_{i}}$ If density of states is proportional $\varepsilon^{-1/2}$ is given by. (a) $\frac{3}{5}\varepsilon_{F}$ (b) $\frac{1}{2}\varepsilon_{F}$ (c) $\frac{3}{4}\varepsilon_{F}$ (d) $\frac{1}{3}\varepsilon_{F}$								
3.	The expression $-\frac{1}{V} \left(\frac{\partial^2 G}{\partial P^2} \right)_T$ represents which thermodynamic quantity?								
	(a) Isothermal susceptibility (b) Coefficient of volume expansion								
	(c) Isothermal compressibility and is also equal to $-\frac{1}{U}\left(\frac{\partial^2 G}{\partial R^2}\right)$								
	(d) Isothermal compressibility but not equal to $-\frac{1}{2}\left(\frac{\partial^2 G}{\partial^2}\right)$								
	(a) isothermal compressionity out not equal to $-\frac{1}{V}\left(\frac{\partial P^2}{\partial P^2}\right)_T$								
4.	In the first –order phase transition which is/are continuous.								
	(a) Volume (b) Chemical Potential								
	(c) Entropy (d) All								
5.	The energy of one mole of a particular system, is given by.								
	$U = AP^2 V$								
	where A is a positive constant of dimension $[P]^{-1}$. The equation of the adiabate								
	(a) $PV^{5/3} = constant$ (b) $PV^{4/3} = constant$								
	(c) (AP+1) $V^{1/3}$ = constant (d) (AP+1) $V^{1/2}$ = constant								
6	Consider a system of distinguishable particle with operate levels 0								
υ.	$\varepsilon_1, 2\varepsilon_2, 3\varepsilon_1, 4\varepsilon_2, \ldots$ for a system with 2 particles and energy $2\varepsilon_2$, the entropy of								
	the system is.								
	(a) kln3 (b) $2kln2$ (c) $2kln3$ (d) kln5								
7.	Consider a system of two particles A and B. Each particle can occupy one of								
	three possible quantum states $ 1\rangle$, $ 2\rangle$ and $ 3\rangle$. The ratio of the probability that								
	the two particles are in the same to the probability that the two particles are in								
	particles They are respectively								
	(a) 1 and 0 (b) $\frac{1}{2}$ and 1 (c) 1 and $\frac{1}{2}$ (d) 0 and $\frac{1}{2}$								
8.	Consider a system of N non-interacting and distinguishable particles with single								
~•	particle of energies $\varepsilon_1, \varepsilon_2, \varepsilon_3 \dots \dots \dots \varepsilon_j$ with corresponding degeneracies g_1, g_2								
	particle of energies e1, e2, e3 in in in ej with corresponding degeneracies g1, g2,								

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in

Page | 2

Career Spectra

 $g_3 \dots g_j$. The value of the single particle partition function in the limit $T \to \infty$ will be.

(a) 1 (b) g_1 (c) $\sum_j g_j$ (d) $(g_j)^N$

9. Consider that the density of states g(E) for super-relativistic gas is defined as.

$$g(E) = \begin{cases} 1, & 0 < E < E_D \\ 0, & E > E_D \end{cases}$$

The specific heat at constant volume C_V for gas of boson and fermions in very low temperature limit $(T \rightarrow 0)$ varies as.

(a) $C_V \alpha T^3$ for bosons and $C_V \alpha T$ for fermions

(b) $C_V \alpha T$ for bosons and $C_V \alpha T^3$ for fermions

(c) $C_V \alpha T^2$ for bosons and $C_V \alpha T$ for fermions

(d) $C_V \alpha T$ for bosons and $C_V \alpha T$ for fermions

10. The excitations of a three-dimensional solid are bosonic in nature with their frequency ω and wave-number k are related by $\omega \propto k$. If the chemical potential is zero, the behavior of the specific heat of the solid at low temperature is proportional to.

(a) $T^{1/2}$ (b) $T^{3/2}$ (c) T^3 (d) T

11. A system consists of N very weakly interacting particles at a temperature sufficiently high such that classical statistics are applicable. Each particle has mass m and oscillates in one direction about its equilibrium position. If restoring force is proportional to x^3 , the heat capacity at temperature T is.

(a) $\frac{3}{2}Nk$ (b) $\frac{5}{4}Nk$ (c) $\frac{3}{4}Nk$ (d) $\frac{5}{2}Nk$

12. Suppose that in some sample the density of states of the electrons $D(\epsilon)$ is a constant D_0 for energy $\epsilon < \mu_0$ and $D(\epsilon) = 0$ for $\epsilon > \mu_0$ the total number of electrons is equal to N. The volume occupied by sample is V. (consider spin and T = 0). The chemical potential is.

(a) 0 (b)
$$\frac{N}{2VD_0}$$
 (c) $\frac{N}{4VD_0}$ (d) $\frac{N}{VD_0}$

13. Consider a system of N non-interacting localized spin- $\frac{1}{2}$ particles embedded in an external magnetic field \vec{B} . The number of particles in the state for which spin along magnetic field is (μ_B is Bohr magnetron).

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in

Page | 3

14. The equation of state of one mole of gas is given by $\left(P + \frac{a}{TV^2}\right)(V - b) = RT$, Where a, b are positive constant of appropriate dimensions and R is universal gas constant, the value of critical temperature of the gas is.

(a)
$$\sqrt{\left(\frac{8a}{27bR}\right)}$$
 (b) $\frac{8a}{27bR}$ (c) $\frac{3a}{27bR}$ (d) $\sqrt{\left(\frac{a}{27bR}\right)}$

15. The entropy S of an ideal paramagnet in a magnetic field is given approximated by.

 $\mathbf{S} = \mathbf{S}_0 - \mathbf{C}\mathbf{U}^2$

Where, U is the energy of the spin system and C is a constant. For the variation of internal energy with absolute temperature T. which of the following plots is correct?

16. The entropy S of a system of N particles at temperature T is given by S = a $(NVU)^{1/3}$, where U and V are internal energy and volume of the system respectively and a is constant. If temperature changes to 4T then specific heat of the system at constant volume becomes.

(a) Four times (b) Two times (c) Eight Times (d) Half

CAREER SPECTRA

ANS-KEY

1.	С	2.	D	3.	D	4.	B	5.	D
6.	Α	7.	С	8.	С	9.	D	10.	С
11.	С	12.	В	13.	С	14.	Α	15.	D
16.	В								

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. careerspectra.in

Page | 4